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tions to correctly describe the behavior of matter. Obvi-
ously many of these approaches are highly impractical forWe present a method for constructing a thermodynamically con-

sistent bi-quintic interpolation scheme that permits the construction use in the course of a radiation-hydrodynamic simulation
of accurate equation of state (EOS) tables. Thermodynamic consis- because the numerical evaluation of such complex equa-
tency requires that the first law of thermodynamics be satisfied tions of state are computationally prohibitive. In some
exactly, i.e., that the pressure and entropy must satisfy the appro-

cases, such as lattice simulations or in molecular dynamicspriate Maxwell relations. Furthermore, the pressure and internal
simulations, the evaluation of the internal energy and pres-energy must satisfy their definitions in terms of the derivatives of

the Helmholtz free energy. We delineate in this paper a method of sure at a single density and temperature may require more
high-order interpolation in tables of the Helmholtz free energy, and computational effort than an entire radiation hydrody-
its derivatives with respect to density and temperature, that ensures namic simulation.
that both of these consistency conditions are exactly satisfied. This

In addition to calculational difficulties, the EOS maytechnique is capable of building highly accurate and consistent EOS
exhibit a wide range of behavior over the range of tempera-tables as a function of temperature and density for use in numerical

simulations of reactive flows where the maintenance of thermody- ture and density that one is interested in. Such behavior
namic consistency is critical. In addition, this method of interpola- may manifest itself as sharp discontinuities in thermody-
tion maintains continuity of the derivatives of pressure and internal namic variables near phase transitions and coexistence
energy with respect to density and temperature. This formalism can

boundaries. When the EOS is based on theory it may relybe extended to the case where the EOS is a function of chemical
on different underlying physical models or calculationalcomposition variables as well as density and temperature. Q 1996

Academic Press, Inc. techniques in different ranges of temperature and density.
This is particularly true for multi-phase chemical equilib-
rium models for the EOS, such as liquid drop models for

1. INTRODUCTION dense matter, where the matching of pressures and ener-
gies at phase boundaries can be very difficult (see [1] for

Tabular equations of state have often been used in the an example). In numerical hydrodynamics codes it is often
numerical hydrodynamic and hydrostatic modeling of as- advantageous to have a tabular interpolation scheme
trophysical phenomena. Usually, the use of EOS (equation ‘‘smooth’’ away discontinuities in EOS tables. Even small
of state) tables has been motivated by the fact that the discontinuities in the pressure or internal energy on order
computer codes for the direct numerical evaluation of the of p1025, which are not physically significant, can pose
EOS are overly time consuming, unstable, or in some way numerical problems for the implicit solution of hydrody-
unsuitable for incorporation into a numerical hydrody- namic equations which are often solved by means of New-
namic or radiation-hydrodynamic simulation. ton–Raphson iteration. In the case of a phase transition,

One can easily think of many examples of cases where smoothing of the EOS table may mean that the discontinu-
direct calculation of the EOS is extremely complex. This ities in physical variables are replaced by a continuous
complexity often arises from the need to solve the many transition. However, by refining the table near the phase
body problem in some approximation in order to describe boundary this transition could be made arbitrarily sharp.
the interactions among the constituents of the gas or liquid. While for some applications this may be unacceptable, for
Such calculations of the EOS may require the direct solu- many applications, such as those utilizing implicit numeri-
tion of sets of highly non-linear chemical and pressure cal techniques, this may not only be acceptable but neces-
equilibrium equations, or the variational solution of sary as well. The scheme we propose in this paper is also
Hartree–Fock or Thomas–Fermi equations, or they may designed to address this need.

Last, the method of direct calculation of the EOS itselfindirectly involve lattice and molecular dynamics simula-
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may be plagued by numerical pathologies which may be tion scheme must ensure that the first law of thermodynam-
ics can be represented by an exact differential equationencountered at a particular density and temperature. This

is true in chemical equilibrium models for the EOS which (see [2] for a definition of exactness). For a reversible
system the first and second laws of thermodynamics requiremay rely on Newton–Raphson iteration to solve sets of

highly non-linear chemical equilibrium equations. If the
equations are pathological in certain neighborhoods of the

dE 5 TdS 1
P
n2 dn, (1)density–temperature plane or if one makes a bad initial

guess of the iterative variables the Newton–Raphson
scheme may fail to converge and thus a hydrodynamic where E is the internal energy per particle, S is the entropy
simulation comes to a jarring halt. per particle, and n is the particle number density. For many

For these reasons, the use of tables to describe the EOS hydrodynamic applications, particularly in astrophysics, it
is highly desirable in many cases. However, the use of is more suitable to employ the temperature, T as a variable
tables brings about a different set of difficulties. These as opposed to the entropy S. The appropriate thermody-
difficulties include the need for accuracy in interpolations, namic potential is the Helmholtz free energy F which is
the need to achieve sufficient resolution of the behavior defined by
of thermodynamic variables, and the need for the interpo-
lated values of the EOS to be thermodynamically consis-

F 5 E 2 TS. (2)tent. The latter problem is particularly troubling in many
cases where reactive flows need to be simulated over very

By restating Eq. (1) in terms of F we arrive at the relation-long timescales. This is particularly true in astrophysics
ship between F, T, and n:where phenomena such as supernovae require simulations

to be carried out over 104–105 timesteps and where the
amount of radiation–matter interaction may be particu- dF 5 2SdT 1

P
n2 dn. (3)

larly sensitive to the entropy of matter. Thermodynamic
inconsistency may become manifest via the unphysical
buildup of entropy, or temperature, during the numerical The entropy and pressure can be defined as
simulation of what should be an adiabatic flow. Thus any
EOS table must produce internal energies and pressures
that not only exhibit fidelity to the true energies and pres- S 5 2

­F
­TU

n

(4)
sures, but the internal energies and pressures themselves
must be thermodynamically self-consistent. By the use of
the phrase ‘‘thermodynamic consistency’’ we refer to how and
well the EOS satisfies the constraints posed by Maxwell
relations of thermodynamics. We will discuss these con-
straints in the next section. P 5 n2 ­F

­nU
T

. (5)
In this paper we present a scheme for constructing high-

order interpolated tabular equations of state in a fashion
that ensures thermodynamic consistency and continuity of Thermodynamics demands that Eq. (3) be an exact differ-
the derivatives of pressure and internal energy. In Section ential equation in order that the internal energy E and the
2 we establish the criterion for thermodynamic consistency. Helmholtz free energy F be state functions of T and n [3].
In Section 3 we present the interpolation scheme and dem- In turn, the exactness of Eq. (1) requires that the pressure
onstrate that it satisfies the consistency constraints. In Sec- and entropy satisfy the Maxwell relation
tion 4 we present an example calculation utilizing our
scheme and an inconsistent scheme for tabular EOS inter-

2
­S
­nU

T

5
1
n2

­P
­TU

n

. (6)polation. In Section 4 we offer some conclusions about the
use of this scheme and the extensions to higher dimensional
interpolations.

The second constraint that the pressure and entropy
must satisfy are their definitions in terms of the Helmholtz2. THERMODYNAMIC CONSISTENCY
free energy per particle F. Thus any tabular EOS should
also satisfy Eqs. (4) and (5). We will demonstrate numeri-As we have already mentioned, any attempt to produce

tabular equations of state must satisfy the constraints which cally in Section 4 that the failure to satisfy these thermody-
namic constraints in numerical simulations leads to unphys-enforce thermodynamic consistency as well as maintaining

accuracy. This constraint has two parts. First, the interpola- ical entropy production or loss in otherwise adiabatic flows.
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3. THE THERMODYNAMICALLY CONSISTENT ­F
­T

R
­F
­TU

ij

(9)INTERPOLATION SCHEME

A fundamental assumption that we make in discussing
andthe following method of interpolation is that one knows

the value of the Helmholtz free energy and its derivatives
with respect to density and temperature at an orthogonal ­F

­n
R

­F
­nU

ij

(10)grid of points (Ti , nj) covering a region of the n 2 T
plane which is of interest. This essentially specifies a global
‘‘model’’ for the free energy. The knowledge of the deriva-

as (T, n) R (Ti , nj). This assures that the pressure, entropy,tives relates directly to the knowledge of the pressure and
and internal energy also obtain the correct values as theentropy at the grid points because of Eqs. (4) and (5).
grid point is approached. Additionally, we wish the secondAlternatively, one may know the values of the internal
derivatives of F to tend to the correct values as a grid pointenergy at the grid points. The Helmholtz free energy can
is approached,then be calculated using Eq. (2) and the knowledge of S

at the grid points. However, one cannot consistently specify
both the free energy F and the internal energy E along ­2F

­T 2 R
­2F
­T 2U

ij

(11)
with S unless the values satisfy Eq. (2) in which case the
knowledge of F and S is equivalent to the knowledge of
E and S. and

Given that we possess the knowledge of the value of F
as well as ­F/­n and ­F/­T, we would like to be able to
calculate the values of F, E, P, and S at intermediate points ­2F

­n2 R
­2F
­n2U

ij

(12)
in the n 2 T plane in a manner that maintains fidelity to
the global behavior of the data known at the grid points
and that satisfies the thermodynamic relationships given as (T, n) R (Ti , nj) which ensures that derivatives such as
by Eqs. (4), (5), and (6). Let us consider an arbitrary value ­E/­T, ­E/­n, ­P/­T, etc. attain the correct values as the
of n and T in the rectangular cell of the density-temperature grid point is approached. This requirement is not motivated
plane bounded by the grid points (ni , Tj), (ni11 , Tj), (ni , by any thermodynamic considerations. Rather, it is moti-
Tj11), and (ni11 , Tj11). One way to assure thermodynamic vated by the considerations of numerical hydrodynamics,
consistency is to explicitly construct the pressure and en- where discontinuities in the derivatives of the pressure and
tropy from the analytic function which describes the free internal energy with respect to density and temperature
energy in this region via Eqs. (4) and (5). The commutabil- often cause numerical difficulties in the solution of the
ity of partial derivatives with respect to n and T, i.e., Euler equations. Experience has shown us that if one im-

plements only the constraints described by Eqs. (8), (9),
and (10) the resulting discontinuity of the derivatives of­2F

­T­n
5

­2F
­n­T

, (7)
the pressure and internal energy at a grid point is more than
sufficient to wreak havoc on Newton–Raphson iterationthus guarantees that the Maxwell relation (6) will be satis-
schemes that are used to solve an implicitly finite-differ-fied also. Thus, thermodynamic consistency is ensured as
enced gas energy equation. By insisting on the constraintslong as the pressure and entropy are calculated by applying
in the interpolation equations described by Eqs. (11) andEqs. (4) and (5) to the free energy interpolation function
(12) we avoid this problem. Finally, we wish the interpola-and by calculating E using Eq. (2) regardless of the particu-
tion function and its first and second derivatives to remainlar choice of interpolation method.
continuous as we cross the boundary from one cell intoIn addition to thermodynamic consistency we desire that
another in the mesh of grid points that covers the regionthe interpolation between grid points have several other
of the temperature density plane that is of interest.attributes. The first of these is fidelity of the interpolation

Other existing EOS interpolation schemes such as theto the underlying thermodynamic data in the table. We
monotone piecewise bi-cubic scheme of Carlson andwish F to go to the correct values as one approaches a grid
Fritsch [4] (hereafter CF) do not specifically attempt topoint, i.e., that
address the concern of maintaining thermodynamic consis-
tency in the interpolation. The CF scheme requires the useF R F(Ti , nj) (8)
of separate interpolations for the pressure and internal
energy and does not assure their consistency. While inas (T, n) R (Ti , nj). Similarly, we wish the derivatives of

F to exhibit a similar limiting behavior, many circumstances the CF scheme, when applied to a
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given set of data, provides enough accuracy in the interpo- where V 5 1/n. This condition may not be satisfied in a
realistic EOS in regions near phase transitions (for anlation to assure that thermodynamic inconsistency is kept

to an acceptable level our intent is to create an interpola- example of this see [1]). For this reason we do not attempt
to enforce the constraint posed by Eq. (16) in our interpola-tion scheme that guarantees thermodynamic consistency. In

addition, the CF scheme is designed primarily to maintain tion scheme. If one wishes to apply the scheme we define
below to an EOS which satisfies Eq. (16) everywhere inmonotonicity in the interpolation in a monotonic data set.

However, there are situations, in astrophysics, for example domain of interest then compliance with this constraint
must be verified by numerical inspection. Note that the[1, 5], where the internal energy per particle is not a mono-

tonic function of density and where pressure is not a mono- CF scheme does not satisfy Eq. (16). Finally, we wish to
note that the stability of shock waves in two dimensionstonic function of the temperature. In these cases the preser-

vation of monotonicity in the behavior of the internal may place further constraints on the EOS (see Section VII
of [9] for a discussion). Neither our scheme or the CFenergy per particle as a function of n or the pressure as a

function of T becomes irrelevant. We provide an example scheme attempts to satisfy these constraints.
It would be desirable to formulate a scheme that alsoof such an equation of state in Section 4. We wish to point

out that thermodynamic stability does require [3] ensured thermodynamic stability. However, given that we
require thermodynamic consistency, fidelity to the underly-
ing data, and continuity of the quantities E, S, and P, and

­S
­TU

n

. 0, (13) their derivatives with respect to T and n, this would, at a
minimum, require an interpolation scheme that contains
more parameters then the bi-quintic scheme described in
the remainder of this section. Even when considering­P

­nU
T

. 0, (14)
quintic interpolation in only one variable, the six coeffi-
cients of the Hermite basis functions, which we describe
in a subsequent paragraph, are determined by the proper-and
ties of thermodynamic consistency, fidelity to the data, and
the continuity of the thermodynamic functions and their
derivatives. Furthermore, it is unclear how the parameters­P

­nU
S

. 0. (15)
in a higher order scheme could be chosen so as to ensure
thermodynamic stability. For this reason we address only
the properties of thermodynamic consistency, fidelity toThe scheme that we propose below does not explicitly
the underlying data on the grid points, and continuityguarantee that the constraints posed by Eqs. (13)–(15) are
of the thermodynamic variables in the remainder ofsatisfied. We would also like to point out that the CF
this paper.scheme does not satisfy the constraint posed by Eq. (15).

In this paper we will avoid the issue of what mesh spacingFor the interpolation scheme we describe below it is neces-
is needed to accurately represent the EOS itself. This willsary to verify by numerical inspection that these constraints
depend on the specifics of the particular EOS one wantsare satisfied for each individual application of this scheme.
to represent as a table. Clearly, an EOS in which the ther-In some cases enforcing thermodynamic stability may in-
modynamic state functions are slowly varying functions ofvolve the judicious choice of the locations of the mesh
temperature and density will require fewer grid points topoints in order to resolve sharp phenomena and ensure that
adequately represent the EOS then will one with rapidlyEqs. (13)–(15) are satisfied. In practice, using equations of
varying state functions. We leave the specifics of the choicestate for astrophysical interest, we have never encountered
mesh spacing up to the reader.a situation where thermodynamic instabilities occur in the

In order to construct an interpolation scheme in twointerpolated values of S and P.
dimensions that possesses the aforementioned requiredAnother point which we would like to make involves the
properties, we first consider the interpolation of F betweenmany numerical methods for hydrodynamic simulations
two temperature points, Ti and Ti11 , at a fixed density nj .[6, 7] that rely on Riemann solvers in order to simulate
The Helmholtz free energy can be constructed at interme-the flow of fluids. However, some approximate Riemann
diate temperatures in a manner which has the desired prop-solvers [8] employed in these methods require convexity
erties by means of piecewise quintic Hermite interpola-of the EOS which places an additional constraint on the
tion [10]:EOS [9]:

F̃(T, nj) 5 F i(nj)c 0
x 1 F i11(nj)c 0

12x 1 F i
T(nj)c 1

x
(17)­2P

­V 2U
S

. 0, (16)
2 F i11

T (nj)c 1
12x 1 F i

TT(nj)c 2
x 1 F i11

TT(nj)c 2
12x ,
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where the c functions are the quintic Hermite basis func-
2 F i11,j11

n c 0
12xc

1
12y 1 F i,j

nnc 0
xc

2
y 1 F i11,j

nn c 0
12xc

2
ytions given by

1 F i,j11
nn c 0

xc
2
12y 1 F i11,j11

nn c 0
12xc

2
12y 1 F i,j

Tnc 1
xc

1
y

c 0
z 5 c 0(z) 5 26z5 1 15z4 2 10z3 1 1, (18)

2 F i11,j
Tn c 1

12xc
1
y 2 F i,j11

Tn c 1
xc

1
12y 1 F i11,j11

Tn c 1
12xc

1
12y

c 1
z 5 c 1(z) 5 23z5 1 8z4 2 6z3 1 z, (19)

1 F i,j
TTnc 2

xc
1
y 1 F i11,j

TTnc 2
12xc

1
y 2 F i,j11

TTnc 2
xc

1
12y

and 2 F i11,j11
TTn c 2

12xc
1
12y 1 F i,j

Tnnc 1
xc

2
y 2 F i11,j

Tnn c 1
12xc

2
y

1 F i,j11
Tnn c 1

xc
2
12y 2 F i11,j11

Tnn c 1
12xc

2
12y 1 F i,j

TTnnc 2
xc

2
yc 2

z 5 c 2(z) 5 As(2z5 1 3z4 2 3z3 1 z2) (20)

1 F i11,j
TTnnc 2

12yc
2
y 1F i,j11

TTnnc 2
xc

2
12y 1F i11,j11

TTnn c 2
12xc

2
12y ,

and where x is defined by (24)

where we have defined y byx ;
T 2 Ti

Ti11 2 Ti
. (21)

y ;
n 2 nj

nj11 2 nj
. (25)We also define the coefficients FT and FTT by

In Eq. (24) the coefficients are defined byF l
T ; ­F

­TU
l

(Ti11 2 Ti) (22)

F lk
n ; ­F

­nU
lk

(nj11 2 nj), (26)and

F lk
T ; ­F

­TU
lk

(Ti11 2 Ti), (27)F l
TT ; ­2F

­T 2U
l

(Ti11 2 Ti)2, (23)

where l 5 i or l 5 i 1 1. The fact that the correct limit of F lk
nn ; ­2F

­n2U
lk

(nj11 2 nj)2, (28)
F̃ and its first and second derivatives with respect to T
obtains as T R Ti , Ti11 can be verified by simple algebra.
Note the minus sign in the fourth term of Eq. (17) which F lk

TT ; ­2F
­T 2U

lk

(Ti11 2 Ti)2, (29)
is necessary in order to ensure that the sign of ­F̃/­T is
correct as T R Ti11 . The quintic Hermite basis functions
are chosen so as to ensure that all the terms of F̃ but the F lk

Tn ; ­2F
­T­nU

lk

(Ti11 2 Ti)(nj11 2 nj), (30)
one containing c 0 vanish as x R 0. If one takes the first
derivative of Eq. (17) the only surviving term is the one
involving ­c 1

x/­T as x R 0. The second derivative of F̃ F lk
TTn ; ­3F

­T 2­nU
lk

(Ti11 2 Ti)2(nj11 2 nj), (31)
exhibits similar behavior.

This interpolation scheme can easily be extended to two
dimensions by interpolating each of the coefficients of the

F lk
Tnn ; ­3F

­T­n2U
lk

(Ti11 2 Ti)(nj11 2 nj)2, (32)basis functions in the density n using the same quintic
interpolation scheme that we applied in order to interpo-
late F in T. The resulting bi-quintic interpolation function

F lk
TTnn ; ­4F

­T 2­n2U
lk

(Ti11 2 Ti)2(nj11 2 nj)2, (33)for F in the temperature-density rectangle bounded by (Ti ,
nj) and (Ti11 , nj11) is given by

where l 5 i, i 1 1 and k 5 j, j 1 1. Despite the fact that
F̃(T, n) 5 F i,jc 0

xc
0
y 1 F i11,jc 0

12xc
0
y 1 F i,j11c 0

xc
0
12y Eq. (24) contains 36 terms, the repetitive patterns present

in the structure terms make it possible to easily translate1 F i11,j11c 0
12xc

0
12y 1 F i,j

T c 1
xc

0
y 2 F i11,j

T c 1
12xc

0
y

into computer code. As in the one-dimensional case with
1 F i,j11

T c 1
xc

0
12y 2 F i11,j11

T c 1
12xc

0
12y 1 F i,j

TTc 2
xc

0
y simple, but tedious, algebra one can easily verify that this

interpolative formula and its first and second derivatives1 F i11,j
TT c 2

12xc
0
y 1 F i,j11

TT c 2
xc

0
12y 1 F i11,j11

TT c 2
12xc

0
12y

maintain the behavior we desire as (T, n) R (Ti , nj). Note
1 F i,j

n c 0
xc

1
y 1 F i11,j

n c 0
12xc

1
y 2 F i,j11

n c 0
xc

1
12y that the two-dimensional interpolation contains cross
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terms involving derivatives of second and higher order. It 4. AN ILLUSTRATIVE CALCULATION
has been pointed out [11] that the last three lines of Eq.

In this section we provide an illustration of the use of(24) are not necessary in order to ensure that F̃ and its
the interpolation technique that we have described in thederivatives obtain the proper values at the grid points or
previous section. We wish to show in a concrete fashionto ensure smoothness across cell boundaries. However, in
the properties of the interpolation and to demonstrate thepractice the addition of the third- and fourth-order deriva-
thermodynamic consistency. In order to do this we willtives that make up the last three lines of Eq. (24) ensures
consider the equation of state of a relativistic electron-that the value of ­2F̃/­T 2 and ­2F̃/­n2 remain well behaved
positron gas which often is utilized in describing astrophysi-in the middle of a cell. By experience we have found that
cal phenomena. While this EOS has a simple analytic for-the omission of these terms can allow the second deriva-
mulation, we employ it here to provide an example of howtives of F̃ to exhibit unphysical and undesirable oscillations
the interpolation technique works.as one moves through the center of a cell.

The EOS has been described elsewhere [1] and we sim-This interpolation scheme could be extended to higher
ply repeat the essential results here. The Helmholtz freedimensions in the same fashion that it was extended
energy per particle is given byfrom one to two dimensions. However, because of the

explosion in the number of terms (216) to go to three
dimensions we will not consider this situation further in

F 5
1

4f 2n("c)3 Se4 1
2
3

f2T 2e2 2
7

45
f 4T 4D , (34)this work.

One matter we wish to comment on is the second and
higher order derivatives of the Helmholtz free energy

where e is the chemical potential of the electrons, " is theneeded in Eqs. (17) and (24). If one does not directly know
reduced Planck’s constant, and c is the speed of light. Thethe values of the higher order derivatives of F all is not
chemical potential is given bylost as they can sometimes be calculated by finite differenc-

ing of the free energy or lower order derivative values at
adjacent grid points. This is sufficient to assure continuity e 5 (a 1 b)1/3 2

f 2T 2

3(a 1 b)1/3 , (35)
of the derivatives of the pressure and internal energy. How-
ever, we do not recommend this approach as we have
experienced problems maintaining local monotonicity in where a and b are given by
the second derivatives of F̃ in some cases when we adopt
such an approach. The problems originate with the diffi-

a 5
3
2

f 2("c)3n (36)culty of accurately representing the second and higher or-
der derivatives using a finite-difference approximation
based on the lower order derivatives at the mesh points.

andWhile it will obviously depend on the specific EOS, in
some cases such finite-difference approximations to these

b 5 Ïa2 1 f 6T 6/27. (37)derivatives may involve a very inaccurate value for the
derivative. Where it is possible we recommend the use
of accurate values for the high order derivatives of F. For convenience we work in nuclear units of mega elec-

tron volts and Fermis (1 fm 5 10213 cm), where " 5As a final comment, we wish to point out that if speed
or computer memory limitations are considerations other 6.5821220 3 10222 MeV ? s and c 5 2.99792458 3 1023

fm ? s21. The temperature T is measured in MeV and thelower order schemes will likely be faster or less memory
intensive. Clearly the number of floating-point operations entropy in measured in units of Boltzmann’s constant kB

which in these units has a value of unity.involved in evaluating the terms of Eq. (24) will be larger
than those required of a simpler interpolation scheme. Using the electron–positron EOS we constructed a grid

of values of F and its derivatives for temperatures in theSimilarly, a simpler interpolation function will be less mem-
ory intensive than the scheme we have described above. range T [ [1, 14] MeV and densities in the range n [

[1026, 1021] fm23. This range of temperature and densityFor example, the two separate interpolations for E and P
in the CF scheme require the storage of six pieces of data corresponds to the environment found in a gravitationally

collapsing star where the electron–positron EOS is physi-at each grid point, in contrast to the nine pieces our scheme
requires. However, our motivation for developing this cally relevant [1]. We employed 14 mesh points in the T

dimension which were linearly spaced with Ti11 2 Ti 5 1scheme was to provide an interpolation method for applica-
tions where the maintenance of thermodynamic consis- MeV. In the density dimension we employed 51 points

which were logarithmically spaced in order to provide 10tency and the continuity of derivatives of the thermody-
namic functions are of paramount concern. mesh points per decade of density. This is a typical spacing
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FIG. 3. The same as Fig. 2, except that the pressure is depicted.

FIG. 1. A density (n 5 3.57 3 1024 fm23) slice illustrating the proper-
ties of the Helmholtz free energy interpolation function. The circles are

range of temperatures at a constant density n 5 3.57 3true values obtained directly from the analytic EOS while the solid line
represents the interpolated value. 1024 fm23. This density is an intermediate value located

halfway between the 26th and 27th density mesh points.
This particular choice of density allows us to depict the
interpolated values at an extremal distance from the mesh

for an EOS table to be utilized in stellar collapse simula- points. The circles in Figs. 1–10 depict the true values
tions. of the plotted functions. As the figures clearly show, the

An example of how the interpolation performs can be interpolated energies, pressure, entropy, and the corre-
seen in Figs. 1–10, where the interpolation function F̃ and sponding derivatives maintain an excellent global and local
the derived thermodynamic variables are plotted for a agreement with the true values.

An example of the manifestation of thermodynamic in-
consistency can also be provided with the aforementioned
electron–positron EOS. We consider a single zone of a

FIG. 2. The internal energy per baryon for the same constant density
slice as Fig. 1. The circles are true values obtained directly from the
analytic EOS while the solid line depicts the analytic derivative of the
interpolation function. FIG. 4. The same as Fig. 2, except that dE/dT is depicted.
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FIG. 5. The same as Fig. 2, except that dE/dn is depicted. FIG. 7. The same as Fig. 2, except that dP/dn is depicted.

Lagrangean fluid dynamics calculation where the first law
E m11 2 E m 1

1
2

(Pm11 1 Pm) F 1
nm11 2

1
nmG5 0, (39)of thermodynamics is given by

where the superscript m is the standard finite-differencedE 1 Pd S1
nD5 0 (38)

notation for the time level. In Eq. (39) both E m11 and Pm11

are functions of the temperature at the new time level
T m11, making this equation an implicit function of T m11.in the absence of heat production or loss. We simulate
We evolve the equation by gently compressing the densitythe compression of this single zone, or fluid element,
by one percent per timestep, i.e.,by time-evolving this equation in a standard implicit

Crank–Nicholson (time-centered) finite-difference fash-
nm11 5 1.01nm. (40)ion,

FIG. 8. The same as Fig. 2, except that the entropy is depicted.FIG. 6. The same as Fig. 2, except that dP/dT is depicted.
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FIG. 11. The temperature versus density for the energy equationFIG. 9. The same as Fig. 2, except that dS/dT is depicted.
example. The circles are the true adiabatic solution, the solid line depicts
the result using the bi-quintic free energy interpolation method while the
dashed line illustrates the result found using bilinear interpolation on the

The new value of T m11 is then found by finding the root same mesh.

of Eq. (39) using Newton–Raphson iteration.
For such a slow increase in the density of a fluid element

agreement between the true solution and the simulationthe compression should be adiabatic if there are no thermo-
using the bi-quintic technique is excellent.dynamic inconsistencies present in the EOS. In Fig. 11 we

We have also conducted this simulation using separateillustrate the results of the aforementioned simulation. We
bilinear interpolations in E and P on the same mesh inbegan the simulation at T 5 1 MeV and n 5 1025 fm23

order to provide an illustration of the buildup of thermody-and ran the calculation for approximately 650 timesteps
namic inconsistency. The use of separate interpolations forwhich is when the temperature ran off the upper edge of
E and P introduces thermodynamic inconsistencies whichthe grid. In Fig. 11 we compare the true adiabatic solution
in this case manifest themselves by moving the T 2 n(circles) to the results of the simulation using the bi-quintic
trajectory of the compression away from the adiabat. Afterinterpolation (solid line). As is apparent from Fig. 11 the
compression of the fluid element by three decades of den-
sity the temperatures along the two curves differ by nearly
DT P 1.1 MeV or nearly 10%. In order to ascertain that
the result was numerically stable we reduced the density
increase to one-tenth of a percent per timestep a found
virtually identical trajectories.

In stellar collapse simulations where infalling gas may
be compressed by as much as five orders of magnitude in
density the resulting temperature error could completely
invalidate a numerical simulation. This may be true in
other reactive flow situations, where reaction rates are very
sensitive to the temperature.

To be fair, we wish to point out that for the simple
equation of state we have employed in this example one
could utilize separate bi-linear interpolations in log E and
log P that would give rise to only a minimal amount of
thermodynamic inconsistency since both the pressure and
internal energy for this particular EOS have approximately
power-law behavior as a function of density and tempera-
ture. For a more general EOS this would not be true and

FIG. 10. The same as Fig. 2, except that dS/dn is depicted. such schemes may not work well. One could argue that it
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is always possible to minimize the problem for a particular lytic derivatives of the free energy functional thereby en-
suring that they obey the appropriate Maxwell relationsEOS by refining the table until sufficient thermodynamic

consistency is achieved. Our intent here is to provide an as well as satisfy the original definitions in terms of the
free energy. We have demonstrated the behavior in thisalternative to such ‘‘tuning.’’ Note that bi-linear interpola-

tion would yield discontinuous derivatives of the pressure scheme in a sample calculation which illustrates the mani-
festation of thermodynamic inconsistencies in a hydrody-and internal energy which would create problems for im-

plicit hydrodynamics codes. One would have to utilize at namic calculation.
While the scheme we have presented herein is devisedleast a bi-cubic scheme to assure continuity of the deriva-

tives of the pressure and energy. for a two-dimensional interpolation in the n 2 T plane, this
technique could easily be extended to higher dimensionsWe have not employed the CF monotonic interpolation

scheme in this example since the internal energy per parti- where the free energy is a function of additional parameters
such as chemical composition variables. The only cost incle is not a globally monotonic function of density for

the electron–positron EOS for densities and temperatures extending the scheme is the growth on the number of terms
in the interpolation functional. Adding quintic interpola-employed in this example. In all fairness, in cases where

the energy and pressure are monotonic functions of density tion would produce 6 3 36 5 216 terms in the interpolation
functional, instead of the 36 terms present in the two-and temperature the CF scheme may be sufficient to accu-

rately represent the EOS without introducing unacceptable dimensional case. In many situations linear interpolation in
higher dimensions may be sufficient to resolve the problem.levels of thermodynamic inconsistency. In contrast, our

intent in this paper has been to develop an accurate scheme We especially thank Jim Lattimer for his helpful analysis
of this technique and his insight into the behavior of Eq.which guarantees thermodynamic consistency as well as

the continuity of the derivatives of E and P in all cases. (24). We also thank Dimitri Mihalas and Mike Norman
for their suggestions and advice on this project. We ac-
knowledge financial support for this work from the NSF5. CONCLUSIONS
through an NSF Computational Science and Engineering
Fellowship (NSF Grant ASC-9308955), from a NASA as-In this paper we have developed a bi-quintic thermody-
trophysics theory grant (NAG 5-3099), and through thenamically consistent interpolation scheme capable of rep-
Laboratory for Computational Astrophysics (NSF Grantresenting EOS data in numerical hydrodynamic simula-
AST-9201113). We also thank the National Center fortions. This scheme has been developed to satisfy three
Supercomputing Applications for computing support.main criteria. The first criterion is that the interpolation

method must be thermodynamically consistent. The sec-
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